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SPACE AND ITS DEFORMATIONS IN THE WORKS  

OF NICOLE ORESME AND BERNHARD RIEMANN 

BOGDAN SUCEAVĂ 

Abstract. Quite unexpectedly, the definition of curvature appears for the first time at 
the middle of the 14th century, in the works of Nicole Oresme. Oresme’s reasons to 
introduce his concept of curvitas are not related to the mathematical motivations that 
later authors pursued to investigate deformations of shape, and together with it the 
modern concept of curvature. The assertion we propose is that Oresme introduced the 
idea of investigating shape (called in his work “configurations”) at the same time with 
introducing the idea of curvature as deformation of shape, which makes the so-called 
(by its author) doctrine of configurations a striking contribution to the medieval 
thinking, similar in this aspect with Riemann’s fundamental contribution from 1854.  
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INTRODUCTION 

As far as we have been able to track back this fundamental mathematical 
concept, the definition of curvature appears for the first time at the middle of the 
14th century, in the works of Nicole Oresme1. If there is any other source where the 
concept of curvature is discussed prior to 1351, it did not reach us and it is not 
known to us. What is quite impressive2 is that Oresme’s reasons to introduce the 
very idea of curvature is not related to the reasons later authors, including Huygens 
and Newton, had to introduce and investigate deformations of shape. Although 
Oresme’s “doctrine” lacks the quantifications and characterizations that the later 

 
        Bogdan Suceavă   

California State University, Fullerton, Department of Mathematics  

email: bsuceava@fullerton.edu 

 
1 Nicole Oresme, De configurationibus qualitatum et motuum, in Nicole Oresme and the 

Medieval Geometry of Qualities and Motions, a treatise on the uniformity and difformity of intensities 

known as Tractatus de configurationibus qualitatum and motuum, edited with an introduction, 

English translation and commentary by Marshall Clagett, The University of Wisconsin Press, 1968. 
2 Isabel M. Serrano, Bogdan D. Suceavă, “A medieval mystery: Nicole Oresme’s concept of 

curvitas”, in Notices Am. Math. Soc., 62, 2015, pp. 1030–1034. 

mailto:bsuceava@fullerton.edu


 Bogdan Suceavă 2 304 

authors employed, powered by the idea of rate of change and the apparition of 
differentiable calculus, the remarkable characteristic we hereby propose is that 
Oresme introduced the idea of investigating shape at the same time with introducing 
the idea of curvature as deformation of shape. This structure of Oresme’s theory 
admits analogies with Bernhard Riemann’s Über die Hypothesen, welche der Geometrie 
zu Grunde liegen, written five centuries after Oresme’s investigation, and triggered 
by Gauss’ towering influence3. While we propose a parallel analysis of Oresme and 
Riemann’s contributions, we are aware that each of their separate investigations 
have been pursued in different times, in different intellectual contexts and were 
subject to very different paradigms. Thus, we focus our discussion on looking at 
this important duality: (A) space and (B) its deformations. In mathematical terms, it 
would be the same as saying that we look at a Riemannian smooth manifold, 
endowed with a metric, which yields a certain curvature, to characterize its shape, 
or rather its deformations. And we are perfectly aware that this concept pertains to 
the development of contemporary differential geometry. 

Since the current paradigm in Riemannian geometry is rooted in investigating 

the concept of a smooth Riemannian manifold endowed with a metric, as a form of 

representing space, perhaps we should start with an important historical point. 

The assertion we’ll pursue in the present paper is the following: in both 

Oresme’s Doctrine of configurations and in Riemann’s Über die Hypothesen… the 

discussion of the idea of shape is done at the same time with analysing the 

deformation of space. In both constructions, we cannot separate a mathematical 

representation of the idea of space from its deformation. That’s why the idea of 

curvature is so important, from both mathematical and philosophical standpoint. 

When we are analysing curvature, we are actually reflecting on the very idea of 

space. 

BERTRAND RUSSELL ON THE QUESTION OF SPACE 

We argue that we cannot separate any discussion of Oresme’s doctrine of 

configurations from the question of space. The origin of the theme, however, has 

different roots than the Aristotle’s tradition, where Oresme found his inspiration. 

Bertrand Russell reflects on the following important fragment, from Plato’s Timaeus: 

There is one kind of being which is always the same, uncreated and 

indestructible, never receiving anything into itself from without, not itself 

going out to any other, but invisible and imperceptible by any sense, and of 

which the contemplation is granted to intelligence only. And there is another 

nature of the same name with it, and like to it, perceived by sense, created, 

always in motion, becoming in place and again vanishing out of place, which 

 
3 Bernhard Riemann, “On the Hypotheses which lie at the Bases of Geometry”, translated by 

Willian Kingdon Clifford, in Nature, 8, 1873, pp. 14–17, 36–37. 
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is apprehended by opinion and sense. And there is a third nature, which is 

space, and is eternal, and admits not of destruction and provides a home for all 

created things, and is apprehended without the help of sense, by a kind of 

spurious reason, and is hardly real; which we beholding as in a dream, say of 

all existence that it must of necessity be in some place and occupy a space, but 

that what is neither in heaven nor in earth has no existence.4 

About this passage, Bertrand Russell writes:  

This is a very difficult passage, which I do not pretend to understand at all 
fully. The theory expressed must, I think, have arisen from reflection on 
geometry, which appeared to be a matter of pure reason, like arithmetic, and 
yet had to do with space, which was an aspect of the sensible world. In general 
it is fanciful to find analogies with later philosophers, but I cannot help 
thinking that Kant must have liked this view of space, as one having an affinity 
with his own.5 

The question we discuss therefore could be phrased as: “what is space?” We 
argue that any discussion on the history of this theme should include Nicole 
Oresme’s theory, even if we are hereby proposing an author who did not use a 
precise computational tool to determine curvature for planar curves, space curves, 
or for surfaces, as later authors did, either by using the tools of calculus, or later on 
vectorial or tensorial calculus. Nevertheless, for this particular topic, Oresme’s 
contribution is way ahead of his time, as we hope we’ll be able to prove below. 

SPACE AND ITS DEFORMATIONS IN THE WORK OF RIEMANN 

The peak achievement that produced a satisfactory clarification of representing 
space, together with its deformations, is found in the work of Bernhard Riemann, at 
the middle of the 19th century6, which means precisely five centuries after Oresme. 
It was Riemann who proposed the idea of manifold (translated by Clifford as 
manifoldness), as a mathematical representation of the idea of space. 

For the reader familiar with the contemporary Riemannian geometry, returning 
to the source and reading Riemann always represents a very profound experience: 
all the potential of the theory is there, in the original work, in nuce. The idea of 
differentiable atlas is there, the description of curvature is also there. We proposed 
above to examine the existence of this pair made up of (A) the representation of 
space; and (B) the idea of space’s deformation. This pairing is clearly described by 
Riemann in the following terms: Having constructed the notion of a manifoldness 

 
4 Bertrand Russell, The History of Western Philosophy, A Touchstone Book, Simon and 

Schuster, 1972, original printing 1945; see p. 146. 
5 Ibidem. 
6 B. Riemann, idem.  
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of n dimensions, and found that its true character consists in the property that the 
determination of position in it may be reduced to n determinations of magnitude, 
we come to the second of the problems proposed above, viz. the study of the 
measure-relations of which such a manifoldness is capable, and of the conditions 
which suffice to determine them. These measure-relations can only be studied in 
abstract notions of quantity, and their dependence on one another can only be 
represented by formulae. On certain assumptions, however, they are decomposable 
into relations which, taken separately, are capable of geometric representation; and 
thus it becomes possible to express geometrically the calculated results. In this 
way, to come to solid ground, we cannot, it is true, avoid abstract considerations in 
our formulae, but at least the results of calculation may subsequently be presented 
in a geometric form. The foundations of these two parts of the question are 
established in the celebrated memoir of Gauss, Disquisitiones generales circa 
superficies curvas.  

One can only admire Riemann’s precision in describing here the full potential 

of Riemannian geometry, even though historically we are here before the birth  

of vector calculus, before tensor calculus, before the control that the so-called 

Riemann-Christoffel tensor provides over the concept of curvature. We argue that 

in Riemann’s construction the duality space & deformation is there, and that is 

quintessential for the developing of the idea. It amounts to saying that we cannot 

discuss the idea of space without fully grasping what its deformation is, and that 

this deformation is quantified by the idea of curvature. That quantification is 

indeed rooted in Gauss’ work from 1827, exactly as Riemann pointed out7.  

ORESME AND HIS DOCTRINE OF CONFIGURATIONS 

After we have seen the idea fully described in Riemann’s work, we will step 

back in time to examine with utmost attention Nicole Oresme’s perspective. It can 

be asserted that many of Oresme’s philosophical ideas are due to the increasing 

impact that the works of Aristotle had in many scholarly circles in the Middle 

Ages, especially in the period that preceded the Black Death8. Before the Recovery 

of Aristotle9, there were only two of Aristotle’s books translated into Latin: 

Categories and On Interpretation. St. Augustine (354–430) describes in his 

Confessions (IV.xvi.28) how he was overwhelmed by a reading of the Categories 

 
7 A thorough discussion of Gauss’ Disquisitiones is in Michael Spivak, A Comprehensive 

Introduction to Differential Geometry, vol. 2, 3rd edition, Houston, Publish or Perish, 1999. 
8 See Edward Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, 

Institutional and Intellectual Contexts, Cambridge Studies in the History of Science, Cambridge 

University Press, 1996. And also by Edward Grant, Science and Religion, 400 B.C. to A.D. 1550: 

From Aristotle to Copernicus, Johns Hopkins University Press, 2006.  
9 R.E. Rubinstein, Aristotle’s Children: How Christians, Muslims, and Jews Rediscovered 

Ancient Wisdom and Illuminated the Middle Ages, Harvest Books, 2004. 
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at the age of 20. For the theme we discuss, one important detail is hidden in 

Aristotle’s text: the idea of continuous measure. It can be debated whether Aristotle 

understood by “measure” the same thing we do today, but nevertheless in Chapter 

6 of the Categories we read (and we underscore in italics the idea of continuity): 

Of Quantity, one kind is discrete, and another continuous; the one consists of parts, 

holding position with respect to each other, but the other of parts, which have not 

that position. Discrete quantity is, as number and sentence, but continuous, as line, 

superficies, body, besides place and time.  

It is quite important that “space” and “time” are listed here, because this is 

the foundational stone on which Oresme builds. This discussion on continuity of 

space seems to have been the inspiration for Oresme in his construction of his 

doctrine of configurations, as we will further analyse below. 

CONTINUITY IN SEVERAL DIMENSIONS:  

WHAT GAUSS WROTE ABOUT IT 

If we are reading Oresme, right at the beginning of his De configurationibus 

we find the following comment: “Every measurable thing except numbers is imagined 

in the manner of continuous quantity.” We are centuries before the important 

distinction between measurability and continuity, which after the modernist 

transformation of mathematics (as the period 1890–1930 is called) represent two 

very different matters. However, this is an important nuance: Oresme thinks in the 

terms of the Western European paradigm of Aristotle’s Recovery, he bases his 

assessments on the Magister’s thoughts and once he found in Aristotle reflections 

on continuity, he builds on them. On the other hand, to better get a feeling on the 

concept, if we pursue the idea of continuity in Gauss’ work, we find in 

Disquisitiones, part 3, the following description: 

A curved surface is said to possess continuous curvature at one of its points 

A, if the directions of all the straight lines drawn from A to points of the 

surface at an infinitely small distance from A are deflected infinitely little from 

one and the same plane passing through A. This plane is said to touch the 

surface at the point A. If this condition is not satisfied for any point, the 

continuity of the curvature is here interrupted, as happens, for example, at the 

vertex of a cone.10  

About this passage, Michael Spivak proposes a rather critical comment:  

“This section merely defines (or tries to define) a differentiable surface, and its 

tangent plane at a point.” Gauss’ formalism might not live up to the contemporary 

standards of notations, but the idea is fully there, and the very fact that Gauss is 

 
10 See Michael Spivak, idem, p. 63. 
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discussing the class of curvature is truly remarkable (more precisely: the failure of 

curvature of being continuous at a point, as an expression of class). Discussing the 

continuity of a characterization of shape is an important point, and Gauss does not 

miss it. There are curvature invariants that do not behave smoothly, and we should 

not take the continuity of the characterization for granted, as it is the case with the 

so-called Chen’s δ-curvature invariants, which depend on the infimum and 

supremum of the values taken by the Riemann-Christoffel tensor in a given planar 

direction11. 

L. EULER DID NOT WORK  

WITH THE CURVATURE OF SURFACES 

One generation before Gauss, the question of curvature of a surface at a given 

point was far from being settled. To better understand how the concept of curvature 

of surfaces was viewed before Gauss, we recall that Leonhard Euler wrote in 1763 

that we cannot define the curvature for surfaces. He writes: 

Pour connaître la courbure des lignes courbes, la détermination du rayon 

osculateur en fournit la plus juste mesure, en nous présentant pour chaque 

point de la courbe un cercle, dont la courbure est précisément la même. Mais, 

quand on demande la courbure d’une surface, la question est fort équivoque,  

et point du tout susceptible d’une réponse absolue, comme dans le cas 

précédent.12  

Today we fully understand the geometric detail that eluded Euler. It was the 

situation when the tangent plane at a point to a surface is intersecting the surface, 

that is the case when the surface is hyperbolic at that point, as it happens for 

example at every point of the catenoid. What Euler hoped to see materialized was 

the idea of approximation of the surface with a sphere, an extension of Newton’s 

idea of osculating circle approximating locally the curve. However, it was not this 

idea that produced the definition of the curvature at a point of a surface, as we can 

see by reading Gauss’ Disquisitiones. but a combination of ideas including small 

infinitesimals and limiting processes, all of which were at Euler’s disposal. It was 

Gauss’ vision that generated the curvature of surfaces, and it was Riemann’s effort 

who extended this concept to n-dimensional representation of space. 

 
11 Introduced in Bang-Yen Chen, “Some pinching and classification theorems for minimal 

submanifolds”, Arch. Math. 60, No. 6, 1993, pp. 568–578. See also, for a more recent overview on 

the development of the theory, Bang-Yen Chen, Pseudo-Riemannian Geometry, δ-Invariants and 

Applications, World Scientific, 2011. 
12 Leonhard Euler, Recherches sur la courbure des surfaces [Research into the curvature of 

surfaces], in Mémoires de l’Académie des Sciences de Berlin 16, 1767, pp. 119–143. 
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Quite surprisingly, Oresme did not possess any small infinities, and that did 

not stop him to bring forth into his analysis of his configurations the idea of 

curvitas. The doctrine of configurations is lacking quantification, but is not lacking 

vision and geometric intuition, irrespective of the author’s singularity in his time. 

READING NICOLE ORESME 

Nicole Orseme was born around 1320 in the village of Allemagne, near Caen, 

today Fleury-sur-Orne. He later was a “bursar” of the College of Navarre from 

1348 to October 4, 1356, when he became a Master. The College of Navarre, 

established by Queen Joan I of Navarre in 1305, focused on teaching the Arts, 

Philosophy, and Theology to intellectuals who could not afford to attend the 

University of Paris. Oresme’s major was in Theology, and not Mathematics. 

Oresme studied, among others, with Jean Buridan and Albert of Saxony, and he 

definitely had good scholarly models around him. It was at this institution where he 

wrote his most important works, De proportionibus proportionum, which is of 

particular importance for the history of mathematics, or Ad pauca respicientes of 

interest for the history of ideas in celestial mechanics.  

Orseme remained Master of the College until December 4, 1361, when he 

was forced to resign. On November 23, 1362 he became a canon of the Rouen 

Cathedral and on March 18, 1364 he was promoted to Dean of the Cathedral. 

Sometime before 1370 he became one of Charles V’s (1364–1380) chaplains and at 

the king’s request he translated from Latin into French Aristotle’s Ethics (1370) 

and Politics as well as Economics. For any biographical details on N. Oresme’s life 

and for other interpretations on his work we refer to either G.W. Copeland’s work13 

or to other sources14. 

To fully describe his theory, Orseme begins his De configurationibus with 

the following clarification: “Every measurable thing except numbers is imagined in 

the manner of continuous quantity.” Then he pursues a discussion of the latitude 

and longitude of qualities, followed with the presentation of their quantity. He 

leads into his argument that qualities can be “figured”. He spends several chapters 

discussing suitability of figures and shape of various particular cases. One important 

distinction appears in chapter I.xi, where Oresme examines15 the differences 

between uniform and difform qualities. He continues his focus on this topic in I.xiv 

with a discussion of “simple difform difformity”, which is of two kinds: simple and 

 
13 G.W. Coopland, Nicole Oresme and the Astrologers. A Study of his Livre de Divinacions, 

Cambridge, Mass., Harvard University Press, 1952. 
14 See Dirk J. Struik, A Source Book in Mathematics: 1200-1800, Cambridge, Mass., Harvard 

University Press, 1969. For a recent analysis, see Bogdan D. Suceavă, Anael Verdugo, “Nicole 

Oresme’s Quest towards the Realm of Reality: Are There Any Themes of Mathematical Modeling 

Present in His Works?”, Creat. Math. Inform., 32, No. 2, 2023, pp. 237–246. 
15 We discussed these details also in Isabel M. Serrano, Bogdan D. Suceavă, idem.  
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composite. The matters could have been discussed differently, if Oresme had better 

algebraic and geometric tools. In I.xv he begins describing four kinds of simple 

difform difformity, which are explained by drawing graphs. This work represents a 

very interesting early discussion of convexity and concavity. After this extensive 

discussion, performed without any algebraic notations, Oresme approaches 

“surface quality”, which represents actually his way of working with the concept of 

space. In the doctrine of configurations we do have representations of space.  

In chapers I.xix, I.xx, and I.xxi, Oresme introduces the concept of curvature. 

A particular case in his so-called doctrine of configurations represents curvature 

(chapter I.xx), endowed with “both extension and intensity”. When Oresme does 

that, he relates the concept of curvature to the category of space. Oresme writes  

(in M. Clagett’s translation): “we do not know with what, or with regard to what, 

the intensity of curvature is measured. For now it appears to me that there are only 

two [possible] ways [to speak of the measure of curvature]. The first is that the 

increase in curvature is a function of its departure from straightness, i.e. of its 

distance from straightness. This is [to be measured] by the quantity of the angle 

constituted of a straight line and a curve, e.g. an angle of contingence or perhaps 

another angle also constructed from a straight line and a curve.” 

We pointed out in an earlier work16 that this very intuitive description is very 

consistent with the modern study of signed curvature and its relationship with the 

change of directional angle with respect to arc length. This intuitive idea is fully 

captured in this paragraph. But Nicole Oresme creates a more precise explanation. 

He continues to write specifically that the curvature of the circle is the inverse of 

its radius in chapter I.xxi, where Oresme cites Aristotle’s On Curved Surfaces, 

which therefore must have been known to him. He delves in more into this concept 

by covering more intricate examples of curves: “difform curvature is composed of 

an infinite number of parts of different nature and unrelatable [to each other]” 

(I.xx). 

Quite remarkably, Oresme has also counterexamples of “qualities” that do 

not fit his theory. He writes that “a quality of an indivisible subject, such as a soul 

or an angel, does not have extension”. In fact, we are saying today that there are 

processes that do not admit a mathematical model, and we accept this fact. 

Additionally, Oresme’s approach on velocity is quite modern, in chapter II.iv., 

where he discusses “diverse ways of [considering] velocity”. He is comparing the 

displacement of material points with the slow growth of trees. Nevertheless, the 

concept of space pertains implicitly to this discussion. Oresme picks up the 

conversation on velocity later on, in Part III of his treatise, where III.v is dedicated 

to an analysis “On the measure of uniform qualities and velocities”. 

Continuity is essential in a discussion as in Oresme’s II.v, titled “On certain 

other successions in motion”. He points out that “every velocity is capable of being 

increased in intensity and decreased in intensity.” He uses “continua” in a sentence 

 
16 Isabel M. Serrano, Bogdan D. Suceavă, idem. 
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like “its continuous increase in intensity is called acceleration”. All these definitions 

represent particular cases of “configurations”, as this “doctrine” seems to be truly a 

precursor of the theory of functions. However, no vertical line test to establish 

when a relation is a function, and, unfortunately, no quantifications; in his doctrine 

we are centuries ahead of that. In chapter II.ix., Oresme proposes the comparison 

of two difformities. The “measure and intention to infinity of certain difformities” 

appears in III.viii. The discussion of finite vs. infinite appears in III.xi. and III.xii 

and it exceeds anything Oresme could have had inspiration about from Aristotle. In 

any case, all of these ideas showcase that Oresme is discussing representations of 

space, and his graph-like “configurations” are in fact ways of discussing space. 

CONCLUSIONS 

The fact that Nicole Oresme produced a discussion of curvature as a measure 

of deformation of shape is quite remarkable, and this intellectual achievement 

stands out in the constellation of medieval thought. We compared Oresme’s 

approach with the works of later authors, and we discovered how advanced his 

thinking was, not just for the 14th century, but for later centuries as well. If we are 

to discuss the idea of deformation of space, perhaps the most appropriate 

comparison of Oresme’s doctrine should be with Riemann’s construction, which is 

the starting point in our the contemporary paradigm in discussing a mathematical 

representation of space. The fact that Oresme’s substantive work was written at 

College de Navarre during the Black Death, all during the Hundred Year War, have 

been all meaningful historical factors that delayed the dissemination of his 

thinking, and reduced any hopes of seeing his work continued by other scholars in 

direct academic filiation. 




